METHOD FOR SOLVING THE STEADY-STATE PROBLEM
OF RADIATIVE-CONDUCTIVE HEAT TRANSFER IN A
PLANE SLAB. 1II

S. V. Stepanov and V., A, Petrov UDC 536.3

An algorithm is described for solving the problem of radiative —conductive heat transfer in a
plane slab of a nongray medium with opaque mirror boundaries. The influence of the total ener-
gy flux on the heat transfer is studied.

The numerical implementation of the method described in the first part of this study [1] is essentially
the reduction of the integrals in Eqgs. (16)-(19) to quadratures.* This is not atrivial procedure, because of the
integrals over the wavelength and, especially, along the coordinates.

With regard to the integration over the wavelength, we note that it is not desirable to use a quadrature
equation immediately over the entire spectrum. A much better accuracy, with the same number of calculation
points, can be achieved by partitioning the integration range into subranges, within each of which there is a cor-
responding average density of calculation points. This approach is based on both the behavior of the spectral

characteristics (primarily k) and the distance from the maximum of the function I%),V.

With regal_ldg to the inte%ration along the coordinate, we note that a difficulty arises here because of the
functions e~V E=E+x) and e~ ux-4 which appear in the expression for the Green's function. At large values
of y,, these functions as well as their derivatives with respect to ¢ change very rapidly near the points x = ¢ =
F1 and £ = x, respectively. Although large values of y,, are reached at either large values of 7, or small
values of u, i.e., when the directed spectral fluxes make a small contribution to the total energy flux, we need
an adequate number of calculation points Iy in order to achieve accurate results, This approach runs into a
considerable cost in computer time, since the time required is roughly proportional to lf(.

In this connection we take special measures to substantially reduce the number of calculation 2pt:)ints along
the coordinate, at no loss of accuracy. The singularities due to the behavior of the functions e Yv(2£ExX) are
taken into account through the partitioning of the interval [—1, 1] into subintervals, within each of which there
is a corresponding average density of calculation points. This average density increases rapidly for the sub-
intervals near the points £ = £1. This procedure is particularly effective for radiative —conductive heat trans-
fer with a small value of N, a moderate value of 7, and a large value of R, i.e., in the case in which the tem-
perature and its derivative vary rapidly near the boundaries.

We also single out the singularities due to the behavior of e YV[X—# and due to the discontinuity of the de-
rivative of the Green's function (but not of its primitive) at £ = x, through a breaking up of the kernels of the
integral equations into parts, one of which is a smooth function of £, while the other contains all the singulari-
ties and can be calculated analytically. We first consider the kernel which contains the primitive of the Green's
function. We write it as j,=ji y +Jy,p, Where

Jo,y = sign (x — ) (B,/v,) (€ H—1). (22)
£l

The function j, , contains all the singularities due to the behavior of e~ TET
therefore write the last term on the right side of Eq. (16) as

so that j; , is smooth, We can

1
Ao = F {1 910 — Loy (v, BN (915 +V, () 00 (9], (23)
i

i —

*The sequence of equation numbers in this paper is a continuation of that in [1].
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where

o 1
Jo (60 B = [ [ 7no IoX (T) jo,v (. 8) dvp, (24)
00
and V; is found by integrating j,, ,:
o 1
Vi) = [ {150 @0 @) (I~ — en, 009 ) g, — 2} dvd. (25)
o0

The elimination of singularities from the kernel of Eq. (17) is slightly more complicated, since here we
run into the avdditional difficulty posed by the discontinuity of the derivative of the Green's function, Writing
g, in the form g, = g;,p+ g;,v, Where the function g;,y carries all the singularities,

Gope=— B —E (12— nhy), 26)

we find the following representation for the integral term in Eq. (17):

1 - ~
Bo = 3 { {16 (x, B 00 ®) — Goye (x: BB (I dE + W; (1) 0 )} @7
i —1
Here
w 1
Goyi (s B = [ [V I50 (T gayy (5 ) dvin, (28)
00

and W; is the result of the integration of g,

o 1
W, () = j 5 w2 19, (Ty) {5— [ L =9 9] & (14 ) (-;— — vvﬁv)} dvdy. 29)
[ ]

v

Accordingly, after these manipulations, the integrands in (23) and _(57) are functions which, along with
their first derivatives, have no singularities due to the functions e--yle . The calculations show that serious
errors result from a neglect of the singularities, especially at small values of the parameter N and at values

of T on the order of a few units. For example, with N = 0.2, 7 =5, R = 0 and ¢ = 0.05, and with Iy = 14 calcula-
tion points, calculations neglecting the singularities lead to values A6 = 1—6(1),different from the actual values

by a factor of about two.

A variety of iteration methods can be used for a numerical solution of Eqs. (16) and (17). In this particu-
lar case it is essentially inconsequential which method is used, as long as the convergence is sufficiently
rapid. Most of the computer time is expended on evaluating the kernels of the integral equations. These ker-
nels are stored in an external memory and then recovered at each iteration step as necessary. It is thus pos-
sible to simultaneously solve several problems of radiative— conductive heat transfer, if they are all governed
by the same kernels. For "gray" problems with m = 4, each series actually corresponds to a certain value of
the reflection coefficient and to a certain optical thickness, while within the series the values of the thermal
conductivity and the total flux can be completely arbitrary.

In this regard the situation is much worse for "selective" problems. For the given spectrum (n,, ky,
Ry, the governing parameter of the series (in addition to h) is T;. This temperature cannot be chosen to be the
same for all types of radiative—conductive heat transfer with equal values of Ty, N, and ¢, since an adequate
accuracy is achieved through the appropriate choice of Ty, because the method can be implemented effectively
only for values of m on the order of a few units. However, this situation does not prevent us from using the
same value of T and thus the same kernels in "selective" problems with different values of Ty, N, and g if the
temperature distributions corresponding to these regimes are not greatly different.

In the present study we use the following iteration process:
g+l — g™ 1 (1 — @) [AB™ = 1 — (a/N) (1 + X)) (30)
(D) — ' - (1 — o) (BO™ — a/N), (31)

where the parameter o (0 < o < 1) regulates the convergence rate. In problems with small values of R, 7, and,
especially, N and with large values of g, the convergence is achieved with values of ¢ of about 1. With N > 4
and o = 0, convergence is achieved for any values of R, 7, and a,i.e,, a simple iteration method is difficult.

1322



TABLE 1. Comparison with the Results of Numerical Calculations
of Other Investigators

Data of [2-5] 7==0,05 7=0,5 =5
J
2] a=1,0799 a=0,7694 a=0,315
(R=0; N=0,8; A0=0,5) AB==0,5000 A0==0,5000 AB=0,5001
a=0,438 a==0,559 a=0,486
R=0,9 AB=0,8984 A6=0,8972 AB=0,8971
[3] ny=25 a==0,556*
(N=0,8; A0=0,9) %, =23,43 £0=0,8987
14] a=0,56004
(R=0,9; N=0,8; A8=0,9) A9=0,9001
5] a=0,1738 a=0,05372
(R=0; N=0,4181; A8=0,0756) AB=0,07469 AB=0,08438

*Data obtained with an account of the angular dependence of the reflection coefficient
R, which is determined on the basis of the Fresnel equations in terms of ny and », (the
refractive index of the medium is 1). The hemispherical reflectivity is 0.9.
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Fig. 1. Temperature drop in the plane slab, A6, as a function
of the total energy flux density. a:R=0, N=4, 1) 7=0;2) 1;
3) 554) 10;5) 3 b: R =10, 7 =1. 1) N=10,5; 2) 1; 3) 2; 4) 4; 5) &,

As the zeroth approximation we choose the solution of the linearized problem. The calculations are
stopped under the condition
(d0/dx)" T — (d8/dx)” |

max <<l —a)y 32
; (@8/dx)" N ©2)

where n is the number of the iteration step, j is the number of the calculation point in the quadrature equation
used in the numerical integration along the coordinate, and y is a parameter which takes on values between
5-107 and 5°10-%, depending on the calculation accuracy required. It is easy to show that under condition
(32) the relative discrepancy in terms of A€ is also smaller than (1 — &) X

The calculations were carried out on a BESM-4 computer with the help of an ALGOL-60 program. The
computer time required for the solution of a "gray" problem ranged from 5 (I = 14) to 20 (Ix = 30) min and
was essentially independent of the number of calculation points along the angle, [;,. In the numerical solufion
of "selective™ problems, the computer time was either essentially the same as that for a "gray® problem (for
small values of the product [,/ or was longer by a factor of about 1.5 (for [,/ = 150), The reason for this
difference is that a considerable amount of time is required for exchange with the external memory, where
the values of the functions J and G are stored.

To check the accuracy of this calculation method it was necessary to compare the results with those cal~
culated by other investigators (Table 1). This comparison turned out to be possible only for the "gray" prob-
lems, since numerical values of k;, have not been given in papers which take the selectiviiy into account.

In the calculations leading to the data shown in Table 1 the number of calculation points along x was 30,
while along u it was 8. The parameter x was 0.00002. Since the problem formulated in the papers used
for comparison was slightly different from our own problem (the temperature drop A6 was specified, and the
total flux ¢ was calculated from it), we used the following procedure for the comparison: Asthe initial values
of a (the upper numbers) we adopted those found by the other investigators for radiative—conductive heat trans-
fer described by the parameters shown in parentheses. The results of our calculation are the temperature
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Fig, 2 Fig. 3

Fig. 2, Distributiqn of the radiative flux density in a plane slab (R=
0, 7 =1). Solid curve) ¢= 0.065; dashed) 0.005. 1) n = 0.5; 2) 1; 3)
2.

Fig. 3. Contribution of the radiative energy flux to the total heat
flux as a function of the total energy flux density R =0, 7= 1): 1)
N=10.5;2) 1; 3) 2; 4) 4; 5) 8;a) x=—1;b) 1.

drops (the lower numbers). The same values of A0 were compared with the values of A8 shown in parenthe-
ses, We see from this table that our data agree best with the data of Crosbie and Viskanta [2], and these authors
recommend their results as standards.

The error of the data, due primarily to the discrete formulation of the problem along the coordinate and
the angle, was estimated by the method of double calculation; it was found to be lower than 0.05% in all cases.
This error increases rapidly with decreasing N, due to the increase in the relative importance of the radiation
in the total heat flux. Consequently, the error increases with increasing contribution to the integral terms in
Eqgs. (16) and (17). For example, with N= 0.1 R = 0.9, t = 0.5, g = 0.01) the calculated values of Af for the
cases of 14, 30, and 44 calculation points are 0.018550, 0.18496, and 0.18499, respectively; for N = 1, these
values are 0.0078254, 0.0078287, and 0.0078287.

For a given calculation accuracy, the minimum number of steps along the coordinate leading to the speci-
fied accuracy is strongly affected by the distribution of calculation points on the interval (=1, 1), The calcu-
lation points are arranged in a symmetric manner with respect to x = 0. Each of the intervals (-1, 0), (0,1)
is generally broken up into three subintervals by the points x = 0,95 and + 0,85, In the subinterval (+1, +0.95)
the Lobatto quadrature is used in the numerical integration, while in the other two subintervals the Gauss
quadratures are used, The average density of calculation points in the first subinterval is higher than that in
the second, while that in the second is higher than that in the third.

The model of a gray medium serves as a sort of standard for estimating the accuracy and applicability
limits of various numerical methods, but it is also attractive because of the possibility for a substantial reduc-
tion in the number of independent parameters determining the radiative —conductive heat transfer. For a plane
slab with opaque boundaries, having a single reflection coefficient, which is independent of the angle, the num-
ber of such parameters is only four: R, 7, N and a. As a rule, the influence of only the first three of these
parameters on the temperature distribution in the slab and on the total heat flux for a given value of Af is
studied. Here a form of the inverse problem is treated: that of calculating the temperature drops and radiative
fluxes in the slab for a given value of a,

We see from Fig. 1a, b that the nonlinearity of the problem due to the radiative flux, which is manifested
in a violation of the direct proportionality between Af and a, is particularly marked at small values of 7 and N
and at large values of @. Figure 2 shows the distribution of the radiative flux in the plane slab. -Quite natu-
rally, the minimum contribution of the radiation to the total energy flux is found at the cold boundary of the
plate. The difference between the values of T/a at the hot and cold boundaries falls off gradually with decreas-
ing . Small values of @ correspond to small temperature drops and thus to regimes in which the problem can
be treated as linear. In this case the temperature gradients become symmetric with respect to the center of
the slab, so that the function §/a becomes symmetric.

The contribution of the radiation to the total heat flux increases with decreasing @, as can be seen parti-
cularly clearly in Fig. 3. It is also clear from the discussion above why the curves of Q/a corresponding to x =
1 and x = —1 coincide in the case a = 0.
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NOTATION

tor x is the coordinate of the point in the slab (€[—1, 1]);
b is the angle measured from the positive X axis;

b = cosy;

T is the temperature;

0 ="T/Ty;

Q is the total energy flux deusity;

q is the radiative flux density;
n is the refractive index;
72 is the value of n® averaged over the spectrum;
k is the absorption coefficient;
b is the absorption coefficient of boundaries;
R is the reflection coefficient;
A is the thermal conductivities;
h is the half-thickness of slab;
T = kh;
@ = Q/(n*T}); q=q/(n?oT});
N=AfmaTih); v =1u; B =1/]2y (1 — RiR;) e~ *¥);
g is the Green's function (13);
j is the primitive of Green's function, (20);
Ji Gy are the kernels of integral equations (18) and (19);
nie is given by Eq. (21);
I[(Ji)V is the i-th derivative of the spectral intensity of the equilibrium radiation in vacuum with respect
i to the temperature;
m is the total number of terms in the Taylor-series expansion of I’ »(T)s
1 is the number of calculation points of the quadrature equation.
Indices
b4 is the dependence on coordinate;
v is the spectral dependence;
] is the angular dependence;
1, 2 are the hot and cold boundaries, respectively;
0 is a certain temperature near which the Taylor-series expansion is carried out.
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