
M E T H O D  F O R  S O L V I N G  T H E  S T E A D Y - S T A T E  P R O B L E M  

O F  R A D I A T I V E - C O N D U C T I V E  H E A T  T R A N S F E R  IN A 
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S. V. S t e p a n o v  a n d  V. A.  P e t r o v  UDC 536.3 

An algori thm is descr ibed for solving the problem of r ad ia t ive -conduc t ive  heat t ransfer  in a 
plane slab of a nongray medium with opaque m i r r o r  boundaries.  The influence of the total ene r -  
gy flux on the heat t r ans fe r  is studied. 

The numer ica l  implementation of the method descr ibed in the f i r s t  par t  of this study [1] is essential ly 
the reduction of the integrals  in Eqs. (16)-(19) to quadratures .  * This is not a t r i v i a lp roeedure ,  because of the 
integrals  over  the wavelength and, especial ly ,  along the coordinates.  

With r ega rd  to the integration over  the wavelength, we note that it is not desirable to use a quadrature 
equation immediately over  the entire spectrum.  A much better  accuracy ,  with the same number  of calculation 
points,  can be achieved by parti t ioning the integration range into subranges ,  within each of which ~.~ere is a co r -  
responding average density of calculation points. This approach is based on both the behavior of tile spectral  
charac te r i s t i c s  (pr imari ly  kv) and the distance f rom the maximum of the function I~, v. 

With regarc~to the integration along the coordinate,  we note that a difficulty a r i ses  here  because of the 
functions e -Yv(2 •177 and e - ~  x-~l'  which appear in the express ion for  the Green ' s  function. At large values 
of yp these functions as well as their  der ivat ives  with respec t  to ~ change very  rapidly near  the points x = ~ = 
T1 and ~ = x, respect ively .  Although large values of Yv are reached at ei ther  large values of rv or small  
values of ~, i .e. ,  when the directed spectra l  fluxes make a smal l  contribution to the total energy fl,~x, we need 
an adequate number of calculation points l x in o rder  to achieve accurate  resul ts .  This approach runs into a 
considerable cost  in computer  t ime,  since the time required  is roughly proport ional  to 12x . 

In this connection we take special measu re s  to substantially reduce the number of calculat ionpoints  along 
the coordinate,  at no loss of accuracy.  The singulari t ies  due to the behavior of the functions e - ? v ( 2 •  are 
taken into account through the parti t ioning of the interval [ - 1 ,  1] into subintervals ,  within each of which there 
is a corresponding average density of calculation points. This average density increases  rapidly for the sub- 
intervals  near  the points ~ = ~1. This procedure  is par t icular ly  effective for r ad ia t ive -conduc t ive  heat t r a n s -  
fer  with a small  value of N, a moderate  value of r ,  and a large value of R, i .e. ,  in the case in which the t em-  
pera ture  and its derivative va ry  rapidly near  the boundaries.  

We also single out the singulari t ies  due to the behavior of e-YVIX-~ and due to the discontinuity of the de-  
r ivat ive of the Green ' s  function (but not of its primitive) at ~ = x, through a breaking up of the kernels  of the 
integral  equations into pa r t s ,  one of which is a smooth function of ~, while the other contains all the s ingular i-  
t ies and can be calculated analytically.  We f i r s t  cons ider  the kernel  which contains the primit ive of the Green ' s  
function. We wri te  it as jv = Ji ,v + J2,v, where 

]2,v = sign (x - -  ~) ([~./~) (e-V~ !~-~'- 1). (22) 

The function J2,v contains all the s ingular i t ies  due to the behavior  of e -yvtx-~l so that Jl,v is smooth. We car~ 
therefore  wri te  the las t  t e rm on the r ight  side of Eq. (16) as 

I 

AO = Z { ~ [sg (x, ~) ~h 0 ( ~ ) -  S2,, (x, ~) ~iO ix)] d~ + V i (x) ~i@ (x)}, (23) 
i - - !  

*The sequence of equation numbers  in this paper  is a continuation of that in [1]. 
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where  

and V i is found by in tegra t ing  Jz,v:  

= 1 

T~nv Ip.v (T0) h,~ (x, ~) dvdp., (9.4) 
0 0 

T~nv I$,v (To) (~Sv/u {[e'~v { l - x )  e-v (l+x)]/?~ _ 2x} dvd~. (25) v , ( x ) = . t . i  2 .> 
0 0 

The e l iminat ion  of s ingula r i t i es  f r o m  the kerne l  of Eq. (17) is sl ightly m o r e  compl ica ted ,  s ince he re  we 
run  into the additional difficulty posed  by the discontinuity of the der iva t ive  of the G r e e n ' s  function. Wri t ing 
gv in the f o r m  gv = gt,  v+ g2,v,  where  the function g2,v c a r r i e s  all  the s ingu la r i t i e s ,  

g~,v = ~ [}@---v,lx-~l + ]x - -  ~[ (1/2 ~ ~/~v), (26) 

we find the following r e p r e s e n t a t i o n  fo r  the  in tegra l  t e r m  in Eq. (17): 

1 

BO = X { S  [G,(x, ~)~h0 (~)--G,,, (x, ~) {,0 (x)]d~ + W, (x) ~l,O (x)}. (27) 
i --1 

H e r e  
= 1 

2 (0  X G,,, (x, ~) = S S %nvlp.~, (r0) g,.~ ( , ~) dvd~, (28) 
0 0 

and W i is  the r e s u l t  of the in tegra t ion of g2, y, 

= 1 

S "++ +e "+ (1 , . ,  
0 0 

Accordingly ,  a f t e r  these  manipula t ions ,  the in tegrands  in (23) and (27) a r e  functions which,  along with 
the i r  f i r s t  d e r i v a t i v e s ,  have no s ingula r i t i es  due to the functions e -Yv I x - ~ .  The calculat ions show that  se r ious  
e r r o r s  r e s u l t  f r o m  a neglec t  of the s ingu la r i t i e s ,  e spec ia l ly  at  smal l  va lues  of the p a r a m e t e r  N and at va lues  
of r on the o r d e r  of a few units .  F o r  e x a m p l e ,  with N = 0.2, T = 5, R = 0 a n d a  = 0.05, and with lx = 14 ca lcu la -  
t ion points ,  ca lcula t ions  neglect ing the s ingula r i t i es  lead to va lues  A0 = 1 -0 (1 ) ,  di f ferent  f rom the actual  va lues  

by a f ac to r  of about two. 

A va r i e t y  of i t e ra t ion  methods  can be used  for  a n u m e r i c a l  solution of Eqs.  (16) and {17). In this p a r t i c u -  
l a r  case  it  is e s sen t i a l ly  inconsequential  which method is used ,  as long as  the convergence is sufficiently 
rapid .  Most  of the compute r  t ime  is expended on evaluat ing the ke rne l s  of the in tegra l  equations.  These  k e r -  
nels  a r e  s to red  in an ex te rna l  m e m o r y  and then r e c o v e r e d  at  each i te ra t ion  s tep as n e c e s s a r y .  It  is thus p o s -  
s ible  to s imul taneous ly  solve s e v e r a l  p r o b l e m s  of r a d i a t i v e -  conductive hea t  t r a n s f e r ,  ff they are  all governed 
by the s ame  kerne l s .  Fo r  "g ray"  p r o b l e m s  with m = 4, each s e r i e s  actual ly  co r r e sponds  to a ce r ta in  value of 
the re f lec t ion  coeff ic ient  and to a ce r ta in  opt ical  th ickness ,  while within the s e r i e s  the values  of the t he rma l  
conductivity and the total  flux can be comple te ly  a r b i t r a r y .  

In this  r e g a r d  the s i tuat ion is much w o r s e  for  " se lec t ive"  p rob l ems .  Fo r  the given spec t rum (nv, kv,  
Rv}, the governing p a r a m e t e r  of the s e r i e s  (in addition to h) is T 0. This  t e m p e r a t u r e  cannot be chosen to be the 
s a m e  for  all  types  of r a d i a t i v e - c o n d u c t i v e  hea t  t r a n s f e r  with equal  va lues  of T t, N, and a ,  since an adequate 
a ccu racy  is achieved through the appropr i a t e  choice of T O , because  the method can be implemented  effect ively 
only for  va lues  of m on the o r d e r  of a few units .  However ,  this  si tuation does not p reven t  us f r o m  using the 
s ame  value of T O and thus the s ame  ke rne l s  in " se lec t ive"  p r o b l e m s  with d i f ferent  va lues  of T l, N, and a if the 
t e m p e r a t u r e  d is t r ibut ions  co r respond ing  to these  r e g i m e s  a re  not grea t ly  different .  

In the p r e s e n t  study we use  the following i te ra t ion  p r o c e s s :  

0 (n+l> : cz0(n> + (1 - -  cr [A0 (~) '-- 1 - -  (a/N) (1 + x)l, (30) 

0'("+1) = a0'(") + (1 - - a ) ( B 0 ( " ) -  a/N), (31) 

where  the p a r a m e t e r  a (0 -< a < 1) r egu la te s  the convergence  ra te .  In p r o b l e m s  with smal l  va lues  of 1R, r, and, 
e spec ia l ly ,  N and with l a rge  va lues  of a, the convergence  is achieved with va lues  of ~ of about 1. With N ~ 4 
and a = 0, convergence  is  achieved for  any va lues  of R ,  r, and a, i .e . ,  a s imple  i tera t ion method is difficult. 
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TABLE 1. Comparison with the Resul ts  of Numerical  Calculations 
of Other Invest igators  

Data of [2-5] z=0.05 ~=0,s x=5 

[21 
(R=0; N=0,8; h0=0,5) 

R=0,9 
[3J nx=25 

(N=0,8; h0=0,9) x~=23,43 
[4] 

(R=0,9; N=0,8; A0=0,9) 
[51 

(R=0; N=0,4181; A0=0,0756) 

a=1,0799 
A0=0,5900 

a=0,438 
A0=0,8984 

a=0,7694 
.X8=0,5000 
a=0,559 

A0=0,8972 
a=0,556" 

A0=0,8987 
a=0,56064 
h0=0,9001 
a=0,1738 

A0=0,07469 

a=0,315 
A0=0,500I 

a=0,466 
A0=0,8971 

a=0,05372 
A0~0,08438 

* Data obtained with an account of the angular dependence of the reflection coefficient 
R, which is determined on the basis of the Fresnel equations in terms of n 1 and x 1 (the 
refractive index of the medium is 1). The hemispherical reftectivity is 0.9. 

-- 4 5 7 / /  
a 

# I 2 

I 
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Fig. 1. Tempera tu re  drop in the plane slab, &0, as a function 
of the total energy flux density, a : R = 0 ,  N = 4 .  1) r =  0;2)  1; 
3) 5; 4) 10; 5) ~ ; b : R =  0, r = 1 .  1) N = 0 . 5 ; 2 )  1 ;3 )  2 ; 4 ) 4 ;  5) 8. 

As the zeroth approximation we choose the solution of the l inear ized problem. The calculations are 
stopped under the condition 

(dO/dx)~,~+ l ) _ _  (dO/dx)~  '~) i 
max i < ( 1 - - a ) % ,  (32) 

i (dO/dx)~  ") ' 

where n is the number of the i teration step, j is the number of the calculation point in the quadrature  equation 
used in the numer ica l  integration along the coordinate ,  and X is a p a r a m e t e r  which takes on values between 
5 �9 10 -4 and 5 " 10 -G, depending on the calculation accuracy  required~ It is easy  to show that under condition 
(32) the relat ive d iscrepancy in t e r m s  of A0 is also smal le r  than (1 - ~)X. 

The calculations were  ca r r i ed  out on a BESM-4 computer with the help of an ALGOL-60 prog~:am. The 
computer  t ime requi red  for the solution of a "gray" problem ranged f rom 5 (/x = 14) to 20 (/x = 30) min and 
was essent ia l ly  independent of the number  of calculation points along the angle, l#. In the numer ica l  solution 
of "select ive"  problems,  the computer  t ime was e i ther  essent ia l ly  the same as that for  a "gray"  problem (for 
small  values of the product  l v l t ~  o r  was longer  by a fac tor  of about 1.5 (for lv/p = 150). The reason for  this 
difference is that a considerable  amount of t ime is required for  exchange with the external  memory ,  where 
the values of the functions J and G are  s tored.  

To check the accuracy  of this calculation method it was neces sa ry  to compare the resu l t s  with those cal-  
culated by other invest igators  (Table 1). This compar ison turned out to be possible only for the "g~ray" p rob-  
l ems ,  since numer ica l  values of k v have not been given in papers  which take the se lec t iv iw into account. 

In the calculations leading to the d a n  shown in Table 1 the number of calculation points along x was 30, 
while along # it was 8. The p a r a m e t e r  X was 0.00002. Since the problem formulated in the papers  used 
for  comparison was slightly different f rom our own problem (the tempera ture  drop A0 was specified,  and the 
total flux a was calculated f rom it), we used the following procedure  for  the compar ison:  As the initial values 
of a (the upper numbers)  we adopted those found by the other invest igators  for r ad ia t ive -conduc t ive  heat t r a n s -  
fer  descr ibed by the p a r a m e t e r s  shown in parentheses .  The resu l t s  of our Calculation are  the tempera ture  
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Fig. 2. Distribution of the radiat ive flux density in a plane slab (R = 
0, r = 1). Solid curve) a = 0.065; dashed) 0.005. 1) n = 0.5; 2) 1; 3) 
2. 

Fig. 3. Contribution of the radiat ive energy flux to the total heat 
flux as a function of the total energy flux density (R = 0, T = 1): 1) 
N = 0.5; 2) 1; 3) 2; 4) 4; 5) 8; a) x = - 1 ;  b) 1. 

drops  (the lower numbers) .  The same values of &0 were  compared  with the values of &O shown in paren the-  
ses.  We see f rom this table that our data agree  bes t  with the data of Crosbie and Viskanta [2], andthese authors 
r ecommend  their  r esu l t s  as s tandards.  

Tlae e r r o r  of the data,  due p r imar i ly  to the d i scre te  formulat ion of the problem along the coordinate and 
the angle, was es t imated  by the method of double calculation; it was found to be lower than 0.05% in all cases.  
This e r r o r  inc reases  rapidly with dec reas ing  N, due to the increase  in the relat ive importance of the radiat ion 
in the total heat  flux. Consequently,  the e r r o r  inc reases  with increas ing contribution to the integral  t e r m s  in 
Eqs. (16) and (17). For  example,  with N = 0.1 (R = 0.9, T = 0.5, a = 0.01) the calculated values of &0 for  the 
cases  of 14, 30, and 44 calculation points are  0.018550, 0.18496, and 0.18499, respect ively;  for  N = 1, these 
values are 0.0078254, 0.0078287, and 0.0078287. 

Fo r  a given calculation accu racy ,  the minimum number  of steps along the coordinate leading to the spec i -  
fied accuracy  is s t rongly affected b y t h e  dis tr ibut ion of calculat ion points on the interval  ( - 1 ,  1). The ca lcu-  
lation points are  a r ranged  in a s y m m e t r i c  manner  with r e spec t  to x = 0. Each of the intervals  ( - 1 ,  0), (0, 1) 
is genera l ly  broken up into three subintervals  by the points x = �9 0.95 and + 0.85. In the subinterval  ( • 1, • 0.95) 
the Lobatto quadrature  is used in the numer ica l  integration, while in the other  two subintervals the Gauss 
quadra tures  are  used.  The average density of calculat ion points in the f i r s t  subinterval  is h igher  than that in 
the second, while that in the second is higher  than that in the third. 

The model of a gray medium se rves  as a so r t  of s tandard for  es t imat ing the accuracy  and applicability 
l imits  of var ious  numer ica l  methods,  but it is also a t t ract ive because of the possibil i ty for a substantial r educ-  
tion in the number  of independent p a r a m e t e r s  determining the r ad ia t ive -conduc t ive  heat  t ransfer .  For  a plane 
slab with opaque boundar ies ,  having a single ref lect ion coefficient,  which is independent of the angle, the num- 
ber  of such p a r a m e t e r s  is only four:  R,  T, N and a. As a ru le ,  the influence of only the f i r s t  three of these 
p a r a m e t e r s  on the t empera tu re  distr ibution in the slab and on the total heat  flux for  a given value of A0 is 
studied. Here a fo rm of the inverse  problem is t reated:  that of calculating the t empera tu re  drops and radiative 
fluxes in the slab for a given value of 

We see f rom Fig. l a ,  b that the nonlineari ty of the problem due to the radiative flux, which is manifested 
in a violation of the d i rec t  proport ional i ty  between A0 and a,  is par t icu lar ly  marked at small  values of T and N 
and at la rge  values of a. Figure 2 shows the distr ibution of the radiat ive flux in the plane slab. Quite natu-  
r a l ly ,  the minimum contribution of the radiat ion to the total energy flux is found at the cold boundary of the 
plate. The difference between the values  of "~/a at the hot and cold boundaries falls off gradually with d e c r e a s -  
ing ~ Small values of a cor respond to smal l  t empera tu re  drops and thus to reg imes  in which the problem can 
be t rea ted  as l inear.  In this case the t empera tu re  gradients become symmet r i c  with respec t  to the center  of 
the slab,  so that the function ~ /abecomes  symmet r ic .  

The contribution of the radiat ion to the total heat  flux increases  with decreas ing  a ,  as can be seen pa r t i -  
cular ly c lear ly  in Fig. 3. It is also c lear  f rom the discuss ion above why the curves  of ~l/a corresponding to x = 
1 and x = - 1  coincide in the case a = 0. 
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NOTATION 

coordinate of the point in the slab (El-I, I]); 
angle m e a s u r e d  f r o m  the pos i t ive  X axis;  

is  the t e m p e r a t u r e ;  

is  the total  ene rgy  flux deusi ty;  
is the rad ia t ive  flux densitY; 
is the 
is the 
is the 
is the 
is the 
is the 
is the 

r e f r a c t i v e  index; 
value of n 2 ave raged  over  the s p e c t r u m ;  
absorpt ion  coefficient;  
absorpt ion  coeff icient  of boundar ies ;  
re f lec t ion  coefficient;  
t h e r m a l  conductivi t ies;  
ha l f - th ickness  of slab;  

a = Q/(-~aT~); -q = q/(~-~ 

N = A/(n~oT~h);  7 = T/'~t; ~ = 1/[27 (1 -- RiR2) e--4~]; 

is the Green ' s  function (13); 
is the p r imi t ive  of G r e e n ' s  function,  (20); 
a r e  the ke rne l s  of in tegra l  equations (18) and (19); 
is given by Eq. (21); 

is the i - th  der iva t ive  of the spec t r a l  intensi ty of the equi l ibr ium radia t ion in vacuum with r e s p e c t  
to the t e m p e r a t u r e ;  
is the total  number  of t e r m s  in the T a y l o r - s e r i e s  expansion of I~, v(T); 
is the number  of calculat ion points of the quadra tu re  equation. 

I n d i c e s :  

X 

1 , 2  
0 

is the dependence on coordinate;  
is the spec t r a l  dependence;  
is the angular  dependence;  
a r e  the hot and cold boundar ies ,  r e spec t ive ly ;  
is  a ce r t a in  t e m p e r a t u r e  n e a r  which the T a y l o r - s e r i e s  expansion is  c a r r i e d  out. 

i. 

2. 
3. 
4. 
5. 
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